Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 47(5): 376-383, 02/05/2014. graf
Article in English | LILACS | ID: lil-709439

ABSTRACT

The intestinal lymph pathway plays an important role in the pathogenesis of organ injury following superior mesenteric artery occlusion (SMAO) shock. We hypothesized that mesenteric lymph reperfusion (MLR) is a major cause of spleen injury after SMAO shock. To test this hypothesis, SMAO shock was induced in Wistar rats by clamping the superior mesenteric artery (SMA) for 1 h, followed by reperfusion for 2 h. Similarly, MLR was performed by clamping the mesenteric lymph duct (MLD) for 1 h, followed by reperfusion for 2 h. In the MLR+SMAO group rats, both the SMA and MLD were clamped and then released for reperfusion for 2 h. SMAO shock alone elicited: 1) splenic structure injury, 2) increased levels of malondialdehyde, nitric oxide (NO), intercellular adhesion molecule-1, endotoxin, lipopolysaccharide receptor (CD14), lipopolysaccharide-binding protein, and tumor necrosis factor-α, 3) enhanced activities of NO synthase and myeloperoxidase, and 4) decreased activities of superoxide dismutase and ATPase. MLR following SMAO shock further aggravated these deleterious effects. We conclude that MLR exacerbates spleen injury caused by SMAO shock, which itself is associated with oxidative stress, excessive release of NO, recruitment of polymorphonuclear neutrophils, endotoxin translocation, and enhanced inflammatory responses.


Subject(s)
Animals , Male , Lymph/metabolism , Mesenteric Vascular Occlusion/complications , Reperfusion Injury/etiology , Reperfusion/adverse effects , Spleen/injuries , Acute-Phase Proteins/analysis , Adenosine Triphosphatases/analysis , /analysis , Carrier Proteins/analysis , Endotoxins/analysis , Intercellular Adhesion Molecule-1/analysis , Intestines/blood supply , Mesenteric Artery, Superior , Malondialdehyde/analysis , Membrane Glycoproteins/analysis , Nitric Oxide Synthase/analysis , Nitric Oxide/analysis , Peroxidase/analysis , Rats, Wistar , Spleen/pathology , Superoxide Dismutase/analysis , Tumor Necrosis Factor-alpha/analysis
2.
Braz. j. med. biol. res ; 42(11): 1044-1049, Nov. 2009. ilus
Article in English | LILACS | ID: lil-529096

ABSTRACT

Neuronal apoptosis occurs in the diabetic brain due to insulin deficiency or insulin resistance, both of which reduce the expression of stem cell factor (SCF). We investigated the possible involvement of the activation of the MAPK/ERK and/or AKT pathways in neuroprotection by SCF in diabetes. Male C57/B6 mice (20-25 g) were randomly divided into four groups of 10 animals each. The morphology of the diabetic brain in mice treated or not with insulin or SCF was evaluated by H&E staining and TUNEL. SCF, ERK1/2 and AKT were measured by Western blotting. In diabetic mice treated with insulin or SCF, there was fewer structural change and apoptosis in the cortex compared to untreated mice. The apoptosis rate of the normal group, the diabetic group receiving vehicle, the diabetic group treated with insulin, and the diabetic group treated with SCF was 0.54 ± 0.077 percent, 2.83 ± 0.156 percent, 1.86 ± 0.094 percent, and 1.78 ± 0.095 percent (mean ± SEM), respectively. SCF expression was lower in the diabetic cortex than in the normal cortex; however, insulin increased the expression of SCF in the diabetic cortex. Furthermore, expression of phosphorylated ERK1/2 and AKT was decreased in the diabetic cortex compared to the normal cortex. However, insulin or SCF could activate the phosphorylation of ERK1/2 and AKT in the diabetic cortex. The results suggest that SCF may protect the brain from apoptosis in diabetes and that the mechanism of this protection may, at least in part, involve activation of the ERK1/2 and AKT pathways. These results provide insight into the mechanisms by which SCF and insulin exert their neuroprotective effects in the diabetic brain.


Subject(s)
Animals , Male , Mice , Apoptosis/drug effects , Brain/pathology , Diabetes Mellitus, Experimental/pathology , Extracellular Signal-Regulated MAP Kinases/metabolism , Neurons/pathology , Proto-Oncogene Proteins c-akt/metabolism , Stem Cell Factor/therapeutic use , Apoptosis/physiology , Blotting, Western , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/enzymology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Mice, Inbred BALB C , Signal Transduction , Streptozocin
SELECTION OF CITATIONS
SEARCH DETAIL